a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
↳ QTRS
↳ RRRPoloQTRSProof
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Used ordering:
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
POL(0) = 0
POL(a__incr(x1)) = x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = x1
POL(a__take(x1, x2)) = 2·x1 + x2
POL(a__zip(x1, x2)) = 2 + x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = x1
POL(take(x1, x2)) = 2·x1 + x2
POL(zip(x1, x2)) = 2 + x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Used ordering:
a__take(0, XS) → nil
POL(0) = 0
POL(a__incr(x1)) = 2·x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = x1
POL(a__take(x1, x2)) = 2 + x1 + x2
POL(a__zip(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = x1
POL(take(x1, x2)) = 2 + x1 + x2
POL(zip(x1, x2)) = x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Used ordering:
a__repItems(nil) → nil
POL(0) = 0
POL(a__incr(x1)) = x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = 2·x1
POL(a__take(x1, x2)) = x1 + x2
POL(a__zip(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = 2·x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
Used ordering:
a__tail(cons(X, XS)) → mark(XS)
POL(0) = 0
POL(a__incr(x1)) = 2·x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = 1 + x1
POL(a__take(x1, x2)) = x1 + x2
POL(a__zip(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = 2·x1
POL(tail(x1)) = 1 + x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
MARK(take(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → A__PAIRNS
MARK(pair(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
MARK(oddNs) → A__ODDNS
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
A__ODDNS → A__PAIRNS
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNS → A__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MARK(take(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → A__PAIRNS
MARK(pair(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
MARK(oddNs) → A__ODDNS
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
A__ODDNS → A__PAIRNS
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNS → A__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
MARK(take(X1, X2)) → MARK(X2)
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNS → A__INCR(a__pairNs)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
MARK(repItems(X)) → MARK(X)
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
POL(0) = 0
POL(A__INCR(x1)) = 2·x1
POL(A__ODDNS) = 0
POL(A__REPITEMS(x1)) = 1 + 2·x1
POL(A__TAKE(x1, x2)) = x1 + x2
POL(A__ZIP(x1, x2)) = x1 + 2·x2
POL(MARK(x1)) = 2·x1
POL(a__incr(x1)) = 2·x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 1 + 2·x1
POL(a__tail(x1)) = x1
POL(a__take(x1, x2)) = x1 + x2
POL(a__zip(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 1 + 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = x1 + 2·x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
MARK(take(X1, X2)) → MARK(X2)
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNS → A__INCR(a__pairNs)
MARK(take(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
MARK(tail(X)) → MARK(X)
POL(0) = 0
POL(A__INCR(x1)) = 2·x1
POL(A__ODDNS) = 0
POL(A__TAKE(x1, x2)) = x1 + x2
POL(A__ZIP(x1, x2)) = x1 + x2
POL(MARK(x1)) = 2·x1
POL(a__incr(x1)) = 2·x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = 1 + x1
POL(a__take(x1, x2)) = x1 + 2·x2
POL(a__zip(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 1
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = 2·x1
POL(tail(x1)) = 1 + x1
POL(take(x1, x2)) = x1 + 2·x2
POL(zip(x1, x2)) = 2·x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
MARK(take(X1, X2)) → MARK(X2)
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)
A__ODDNS → A__INCR(a__pairNs)
MARK(take(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X2)
POL(0) = 0
POL(A__INCR(x1)) = 2 + x1
POL(A__ODDNS) = 2
POL(A__TAKE(x1, x2)) = 2 + x1 + x2
POL(A__ZIP(x1, x2)) = 2 + x1 + x2
POL(MARK(x1)) = 2 + x1
POL(a__incr(x1)) = 2·x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = 2·x1
POL(a__take(x1, x2)) = x1 + x2
POL(a__zip(x1, x2)) = 2 + x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = 2·x1
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = 2 + x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
MARK(take(X1, X2)) → MARK(X2)
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
A__ODDNS → A__INCR(a__pairNs)
MARK(take(X1, X2)) → MARK(X1)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
MARK(take(X1, X2)) → MARK(X2)
MARK(incr(X)) → A__INCR(mark(X))
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
A__ODDNS → A__INCR(a__pairNs)
MARK(take(X1, X2)) → MARK(X1)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
MARK(take(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
POL(0) = 0
POL(A__INCR(x1)) = 2·x1
POL(A__ODDNS) = 0
POL(A__TAKE(x1, x2)) = x1 + x2
POL(MARK(x1)) = x1
POL(a__incr(x1)) = 2·x1
POL(a__oddNs) = 0
POL(a__pairNs) = 0
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = 2·x1
POL(a__take(x1, x2)) = 1 + x1 + x2
POL(a__zip(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 0
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = 2·x1
POL(s(x1)) = 2·x1
POL(tail(x1)) = 2·x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(zip(x1, x2)) = 2·x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
MARK(incr(X)) → A__INCR(mark(X))
MARK(pair(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
A__ODDNS → A__INCR(a__pairNs)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
MARK(incr(X)) → A__INCR(mark(X))
MARK(pair(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
A__ODDNS → A__INCR(a__pairNs)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
MARK(oddNs) → A__ODDNS
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
MARK(oddNs) → A__ODDNS
POL(0) = 0
POL(A__INCR(x1)) = x1
POL(A__ODDNS) = 2
POL(MARK(x1)) = 2·x1
POL(a__incr(x1)) = x1
POL(a__oddNs) = 2
POL(a__pairNs) = 2
POL(a__repItems(x1)) = 2·x1
POL(a__tail(x1)) = x1
POL(a__take(x1, x2)) = x1 + 2·x2
POL(a__zip(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(incr(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 2
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 2
POL(repItems(x1)) = 2·x1
POL(s(x1)) = x1
POL(tail(x1)) = x1
POL(take(x1, x2)) = x1 + 2·x2
POL(zip(x1, x2)) = 2·x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
MARK(incr(X)) → A__INCR(mark(X))
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
A__ODDNS → A__INCR(a__pairNs)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(incr(X)) → A__INCR(mark(X))
MARK(pair(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
Used ordering: Polynomial interpretation [25]:
MARK(pair(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__INCR(cons(X, XS)) → MARK(X)
POL(0) = 0
POL(A__INCR(x1)) = x1
POL(MARK(x1)) = x1
POL(a__incr(x1)) = 1 + x1
POL(a__oddNs) = 1
POL(a__pairNs) = 0
POL(a__repItems(x1)) = x1
POL(a__tail(x1)) = 0
POL(a__take(x1, x2)) = x1 + x2
POL(a__zip(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = x1
POL(incr(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(oddNs) = 1
POL(pair(x1, x2)) = x1 + x2
POL(pairNs) = 0
POL(repItems(x1)) = x1
POL(s(x1)) = x1
POL(tail(x1)) = 0
POL(take(x1, x2)) = x1 + x2
POL(zip(x1, x2)) = 1 + x1 + x2
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__pairNs → cons(0, incr(oddNs))
a__repItems(X) → repItems(X)
a__tail(X) → tail(X)
a__zip(X1, X2) → zip(X1, X2)
a__take(X1, X2) → take(X1, X2)
a__oddNs → oddNs
a__incr(X) → incr(X)
a__pairNs → pairNs
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
mark(nil) → nil
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
A__INCR(cons(X, XS)) → MARK(X)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
MARK(pair(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
a__pairNs → cons(0, incr(oddNs))
a__oddNs → a__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNs → pairNs
a__incr(X) → incr(X)
a__oddNs → oddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X1)
From the DPs we obtained the following set of size-change graphs: